How to minimize and deal with Post TAVR complications?

Raj R. Makkar, MD Cedars-Sinai Heart Institute, Los Angeles....

Cedars Sinai TAVR Program 533 TAVRs in Calender Year 2016 309 TAVRs in 2017 (thru July 11)

Key TAVR complications

- Paravalvular AI
- Aortic Root Injury
- Left Main Occlusion
- Pericardial Tamponade
- Vascular Injury
- Stroke
- Myocardial Stunning and Hemodynamic Collapse
- Conduction System disoreder and heart block
- Valve Thrombosis
- Endocarditis

Incidence, Predictors, and Outcomes of Aortic Regurgitation After Transcatheter Aortic Valve Replacement

Meta-analysis of 45 studies, 12,926 patients

Meta-Analysis and Systematic Review of Literature

Moderate/severe AR post TAVR is associated with increased 1-year mortality

Study name	Statistics for each study				
	Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value
Lemos.	4.900	1.367	17.570	2.439	0.015
Hayashida	1.970	1.187	3.271	2.621	0.009
Amabile	1.500	0.329	6.829	0.524	0.600
Sinning	3.890	2.020	7.491	4.063	0.000
Tamburino	3.785	1.572	9.112	2.969	0.003
Fraccaro	2.190	1.023	4.686	2.020	0.043
Kodali	2.110	1.433	3.107	3.783	0.000
Moat	1.490	1.002	2.215	1.971	0.049
Gilard	2.490	1.909	3.248	6.728	0.000

HR 2.27 (95% CI 1.84-2.80)

Athappan G. et al. JACC 2013

TAVI annulus sizing in 2011 Intraprocedural TEE

Hingepoint-hingepoint 18.5 mm

20.7 mm

23 mm Sapien Moderate PV AI

TAVI annulus sizing in 2011 Retrospective analysis of baseline CT

Hingepoint-hingepoint 18.5 mm

D_{max}=27.0 mm

D_{min}=18.7 mm

D_{mean}=22.9 mm

D_{circ}=24.3 mm

D_{CSA}=23.6 mm

Significant paravalvular Al post valve deployment

Final Result after post-dilatation Mild paravalvular Al

Final Hemodynamics after post-dilatation

Restoration of Ao-LV diastolic gradient and improvement in LV diastolic pressure

Efficacy and Safety of Balloon post-dilatation after TAVR with Balloon-expandable Valves 211 patients undergoing Edwards valve implantation, f/u 12 months

Post-dilatation performed in patients with AR \geq 2: n=59 (28%)

Nombela-Franco et al. JACC: Cardiovascular Interventions 2012

87 y/o male referred for TAVR NYHA 3 heart failure, diastolic

Pre-TAVR CT Plan for 29mm Sapien3

High-risk features on pre-TAVR

29mm Sapien 3 deployment Predilation with 23mm x 4cm Z-Med II Balloon

Careful predilation, heavily calcified valve

29mm Sapien 3

Eccentric deployment of Sapien3 Well expanded valve, but eccentrically located

Persisent PVL despite post-dilation

Post-dilation performed with the Sapien3 balloon

PVL closure performed immediately after post-dilation due to persistent moderate PVL

Step 1: Shuttle sheath across the leak

Leak crossed with Terumo glidewire with a MPA catheter; wire exchanged for a Amplatz stiff wire

Step 3: 10mm AVP 2 plug advanced

Step 2: Amplatz wire removed from the LV

Step 4: 10mm AVP 2 plug deployed

Final result s/p 10mm AVP 2 plug deployment

TEE guidance during the procedure

84 y/o male undergoing TAVR with 26mm Edwards-SAPIEN valve

Severe PV AR noted immediately after valve deployment

Paravalvular AR managed with ViV deployment of 26mm Edwards-SAPIEN valve

- Discharged home on
 Day#3 post-procedure
 NYHA Class 2 on 1
 - month follow-up

65 y/o male with bicuspid AS presenting for TAVR Plus 5 ccs: Annular area 841.4mm²

Key Points for Paravalvular AI

- Cross sectional sizing using CT or 3D echocardiography
- Post dilatation with extra volume in the balloon
- Too high or low-deploy second valve
- If post dilatation carries risk of root injury consider plugging the leak

TAVI in 80 y female with radiation chest deformity 2009

Lossy Compression - not intended for diagnosis

74 y/o male undergoing TAVR with 29mm Sapien 3

29mm Sapien 3 deployed

Large pericardial effusion noted postvalve deployment, with drop in BP

Pre-TAVR CT analysis

Aortic root angiogram revealed the site of aortic root rupture

Root rupture site successfully closed with 4 coils

Patient transferred to the ICU, extubated on Day 1, transferred out of the ICU on Day 4, doing well

88 y/o female with severe AS undergoing TAVR Pre-TAVR LM angiography

Pre-TAVR CT

Plan for 26-mm Edwards-Sapien XT valve LM protected with 2 balance wires in the LAD and CX

Routine selective injection post valve deployment, showing a new ostial LM 80% stenosis No clinical signs

Deployment of a 3.5mmX12mm Xience stent in the LM

Final result

Case: LM occlusion noted 1 month post TAVR
Due to risk of LM obstruction, TAVR with a 26mm Sapien3 performed with coronary protection

Low LM height (6.8mm)

26mm Sapien3 deployed with coronary protection

LM angiogram prior to removing the stent undeployed

95% ostial LM impingement by the calcified aortic valve leaflet noted 1 month post-TAVR Successful stenting with DESx2

Adequate visualization of the LM after TAVR is important in cases where the risk of LM occlusion is high, even in the absence of hemodynamic compromise

79 y/o female undergoing transcatheter ViV implantation

Degenerative 23-mm *St. Jude Toronto SPV bioprosthetic aortic valve* with significant AR

Toronto SPV St. Jude Stentless Prosthetic Valve

Low left main LM 7.4mm, RCA 12.1mm

LM protected with 2 Balance wires and Xience 4.0 x 12 mm stent in the LAD

Significant LM compromise due to the prosthetic valve

Xience 4.0 x 12 mm stenting to ostial LM, with residual ostial LM stenosis

4.0 x 12 mm VeriFlex BMS to the ostial LM

Final result s/p Xience 4.0x12 and Veriflex 4.0x12

74 y/o female undergoing ViV with 23mm Sapien 3 Degenerative 21mm Mitroflow valve

23mm Sapien 3 deployed Left and right coronaries protected due to low coronary height

Cardiac arrest immediately following valve deployment LM noted to be occluded

Occluded LM with no flow Pre-positioned stent pulled from the LAD into the LM and deployed

Persistent cardiac arrest and ventricular fibrillation despite ostial LM stenting Immediately placed on cardiopulmonary bypass

LM wired by drilling through the Mitroflow leaflet A 0.018 inch Astada 30 peripheral

guidewire through a Corsair

Unable to cross with Miracle Bro, Ultimate Bro, Gaia 2nd, Confianza Pro

2nd LM stent deployed into the ostial LM Restoration of TIMI 3 flow

Cardiopulmonary bypass discontinued at the end of the procedure Patient transferred to the ICU, discharged home 4 days later

Ostial LM stented

Final resut TIMI 3 flow

Stent extending from the LM ostium into the TAVR valve frame

68 y/o female referred for TAVR Cross-sectional CT for pre-TAVR work-up Plan for 26mm CoreValve

Cross-sectional CT for pre-TAVR work-up Assessment of LM and RCA height from the annulus

Cross-sectional CT for pre-TAVR work-up Assessment of annular and leaflet calcification

26mm CoreValve deployed

Normal valve function immediately post-deployment

26mm CoreValve deployed

Progressive hemodynamic compromise in the next few minutes

Ventricular fibrillation with multiple cycles of CPR

LM occlusion noted

M4 M4

cm/s

70 bpm

CoreValve snared into ascending aorta with restoration of LM flow

23mm CoreValve deployed across the native aortic valve

Residual LM stenosis after 2nd CoreValve deployment 4.0 x 12mm Xience Alpine stent deployed

Final angiographic result ECMO removed after LM stent deployment

Clinical impact of coronary protection during transcatheter aortic valve implantation: first reported series of patients

Yigal Abramowitz, MD; Tarun Chakravarty, MD; Hasan Jilaihawi, MD; Mohammad Kashif, MD; Yoshio Kazuno, MD; Nobuyuki Takahashi, MD; Yoshio Maeno, MD, PhD; Mamoo Nakamura, MD; Wen Cheng, MD; Raj R. Makkar*, MD

Cedars-Sinai Heart Institute, Los Angeles, CA, USA

LM significant disease or LM ostial stent

Anatomical factors

- Low LM
- Narrow SOV
- Severe AV calcification

Cedars-Sinai approach for coronary protection

Valve-in-valve

- Mitroflow
- Trifecta
- Stentless
- Homografts

Coronary protection

Abramowitz Y et al. EuroIntervention 2015

TAVR in Mitroflow with cracking of the Mitroflow valve ring

90 y/o female referred for transcatheter ViV Deemed high-risk due to advanced age and comorbities

CT evaluation for TAVR

Low RCA height (5.5mm)

Low LM height (7.4mm)

Plan for 20mm Sapien3 valve Left and right coronary protection due to low coronary height

✓ Valve Size	TAVI Cho	ices	
TAVI Valve Choices For: Mitroflow, 21			
Sapien 20		Core Valv Not Recomm	e ended
Portico Not Recomme	anded	Jena Not Recomm	ended
Lotus Not Recomme	ended	53 Not Recomme	ended
Accurate 7 Not Recomme	A anded	Accurate N Not Recomm	EO ended
Home Stent) De ed Stentles:	Sutureless	() TAVI

Transcatheter ViV with a 20mm Sapien3 Coronary protection with 2 stents in LAD and LCx

Hemodynamics

Post-dilation performed with a 22x4.5cm True Balloon

Reduction in gradients with post-dilation, but still high residual gradients

Post-dilation performed with a 22x4.5cm True Balloon MitroFlow valve ring fractured

Before post-dilation

After post-dilation

expansion

Hemodynamics

Successful reduction in gradients with fracturing the Mitroflow ring

Ostial RCA and ostial LM stents deployed for coronary protection

Background

- 78 yr old female patient w/ PMHx severe symptomatic AS, HTN, HL, atrial fibrillation, and congestive heart failure.
- Symptoms: worsening fatigue and shortness of breath over the past year with multiple admission for heart failure
Intra-procedure TEE pre-TAVR

Baseline Hemodynamics

Baseline Aortic Root Angiography

23S3 Valve Deployment

TEE post-TAVR deployment

TEE post-TAVR deployment

Post-TAVR Hemodynamics

AÓ	211/73	(117) SA	44	18:45:24
LV	253 / 15,	30	44	18:45:24
Aortic Grd		29.2 mn/ 385 ms/ 42.0 p-p	44	18:45:24
AO	91 / 45	(65)	50	18:49:24
LV	259 / 10,	21	. 50	18:49:24
AO	90 / 44	(64)	51	18:49:45
LV	120 / 8,	22	51	18:49:45
Aortic Grd		18.5 mn/ 232 ms/ 30.0 p-p	51	18:49:45
Aortic Grd		96.5 mn/ 505 ms/ 168.0 p-p	50	18:49:24
AO	84/41	(60)	49	18:50:30
LV	98 / 9,	20	49	18:50:30
Aortic Grd		13.3 mn/ 184 ms/ 14.0 p-p	49	18:50:30
AO	79/39	(56)	49	18:51:13
LV	249/7,	19	49	18:51:13
Aortic Grd		96.3 mn/ 483 ms/ 170.0 p-p	49	18:51:13
AO	171/80	(113)	43	18:52:16
LV	249/11,	18	43	18:52:16
Aortic Grd		47.1 mn/ 359 ms/ 78.0 p-p	43	18:52:16
AO	113/53	(77)	47	18:54:33
LV	132 / 11,	20	47	18:54:33
Aortic Grd		20,3 mn/ 197 ms/ 19.0 p-p	47	18:54:33
AO	105 / 50	(73)	55	19:50:06
LV	157 / 11,	22	55	19:50:06
Aortic Grd		41.8 mn/ 356 ms/ 52.0 p-p	55	19:50:06

Post-TAVR Pressure Waveforms

Septal Ablation Procedure

Septal Ablation

Septal Ablation

Septal Ablation Procedure

Hemodynamics Post-Ablation

Final Pressure waveforms

Gradient after 2nd septal ablation

Post-procedure TTE

Parasternal Long Axis

CW Doppler

61 y/o male with EF 10% presenting in cardiogenic shock, on 2 inotropes, with persistent hypotension Patient transferred from OSH for heart transplant evaluation

All Strokes at 30 Days Edwards SAPIEN Valves

72 year old Male with LVEF 15-20% and Critical AS

TTE

TEE

Compassionate Use of Sentinel in 2016: Successful TAVR,No Stroke

Claret Sentinel Device

23mm S3 Transfemoral TAVR

SENTINEL study shows significant procedural stroke reduction

Results from SENTINEL multi-national randomized trial of n=363 TAVI patients with vs. without protection using SentinelTM cerebral embolic protection system shows a significant reduction in procedural stroke (63%)

SENTINEL trial. Data presented at Sentinel FDA Advisory Panel, February 23, 2017

80y male with 23 mm Mitraflow and AS+AR

Hemodynamics

Post deployment TEE

What is the problem here? Is the valve mounted correctly?

2nd valve deployed

LV systolic function post TAVR

Procedural Considerations

ADVANCE II confirmed that implant depth is the strongest <u>procedural</u> predictor of new *PPM*¹

Error bars are standard error

Implant depth defined as the distance from the lower edge of the non-coronary leaflet to the ventricular edge of the frame *Oversizing occurs when a valve is implanted in an annulus that is smaller than the range defined by the CoreValve sizing guide % Oversizing = 100 x ([Perimeter of CoreValve- CT Derived Perimeter of the Annulus] / CT Derived Perimeter of the Annulus)

POBA performed with a 6mm x 40mm balloon Persistent occlusion of the right femoral artery

Final result s/p stenting to right iliofemoral and profunda

88 y/o female with severe AS referred for TAVR Extreme risk for surgical AVR due to multiple comorbidities Not a candidate for transfemoral approach

Plan for 26-mm Sapien-XT Left subclavian approach Deemed high-risk for transapical and transaortic approach

Area 477.9mm²; Perimeter 78.5mm; Dmin 23mm; Dmax 27.6mm Aneglaienvea 12: 24./ mm

LC

Valve positioning being performed by the left subclavian approach

s/p 26-mm Sapien-XT by subclavian approach

Type B aortic dissection Managed medically, no intervention performed

No dissection in the ascending aorta

Key Aspects of Preventing & Dealing with Complications

- Mutidisciplinary procedure planning with incorporation of imaging, especially CT
- Must have a bailout strategy and drills for different scenarios such as left main occlusion, root injury, pericardial tamponade, access to neurointerventionalist if there is stroke
- Easy access to heart lung machine and anesthesiologist is critical in hemodynamic compromise
- A good working knowledge of peripheral interventions to deal with vascular complications